Stimulus-invariant auditory cortex threat encoding during fear conditioning with simple and complex sounds

نویسندگان

  • Matthias Staib
  • Dominik R. Bach
چکیده

Learning to predict threat depends on amygdala plasticity and does not require auditory cortex (ACX) when threat predictors (conditioned stimuli, CS) are simple sine tones. However, ACX is required in rodents to learn from some naturally occurring CS. Yet, the precise function of ACX, and whether it differs for different CS types, is unknown. Here, we address how ACX encodes threat predictions during human fear conditioning using functional magnetic resonance imaging (fMRI) with multivariate pattern analysis. As in previous rodent work, CS+ and CS- were defined either by direction of frequency modulation (complex) or by frequency of pure tones (simple). In an instructed non-reinforcement context, different sets of simple and complex sounds were always presented without reinforcement (neutral sounds, NS). Threat encoding was measured by separation of fMRI response patterns induced by CS+/CS-, or similar NS1/NS2 pairs. We found that fMRI patterns in Heschl's gyrus encoded threat prediction over and above encoding the physical stimulus features also present in NS, i.e. CS+/CS- could be separated better than NS1/NS2. This was the case both for simple and complex CS. Furthermore, cross-prediction demonstrated that threat representations were similar for simple and complex CS, and thus unlikely to emerge from stimulus-specific top-down, or learning-induced, receptive field plasticity. Searchlight analysis across the entire ACX demonstrated further threat representations in a region including BA22 and BA42. However, in this region, patterns were distinct for simple and complex sounds, and could thus potentially arise from receptive field plasticity. Strikingly, across participants, individual size of Heschl's gyrus predicted strength of fear learning for complex sounds. Overall, our findings suggest that ACX represents threat predictions, and that Heschl's gyrus contains a threat representation that is invariant across physical stimulus categories.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Auditory cortex is required for fear potentiation of gap detection.

Auditory cortex is necessary for the perceptual detection of brief gaps in noise, but is not necessary for many other auditory tasks such as frequency discrimination, prepulse inhibition of startle responses, or fear conditioning with pure tones. It remains unclear why auditory cortex should be necessary for some auditory tasks but not others. One possibility is that auditory cortex is causally...

متن کامل

Auditory Cortex is Important in the Extinction of Two Different Tone-Based Conditioned Fear Memories in Rats

Extensive fear extinction research is guided by the view that there are structures in the brain that develop inhibitory control over the expression of conditioned fear memories. While the medial prefrontal cortex has recently captured attention as the locus of plasticity essential for extinction of conditioned fear, the auditory cortex is another plausible cortical area involved in extinction l...

متن کامل

A meta-analysis of instructed fear studies: Implications for conscious appraisal of threat

In classical Pavlovian fear conditioning, a neutral stimulus (conditioned stimulus, CS) comes to be evaluated as threatening due to its association with an aversive stimulus (unconditioned stimulus, UCS), and elicits fear. In a subtype of fear conditioning paradigms, called instructed fear or anticipatory anxiety, subjects are made aware of the CS-UCS association prior to actually experiencing ...

متن کامل

Fear conditioning enhances γ oscillations and their entrainment of neurons representing the conditioned stimulus.

Learning alters the responses of neurons in the neocortex, typically strengthening their encoding of behaviorally relevant stimuli. These enhancements are studied extensively in the auditory cortex by characterizing changes in firing rates and evoked potentials. However, synchronous activity is also important for the processing of stimuli, especially the relationship between gamma oscillations ...

متن کامل

Level-tuned neurons in primary auditory cortex adapt differently to loud versus soft sounds.

The responses of auditory neurons tuned to stimulus intensity (i.e., nonmonotonic rate-level responders) have typically been analyzed with stimulus paradigms that eliminate neuronal adaptation to recent stimulus statistics. This procedure is usually accomplished by presenting individual sounds with long silent periods between them. Studies using such paradigms have led to hypotheses that nonmon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 166  شماره 

صفحات  -

تاریخ انتشار 2018